Round 1: Elementary Number Theory (NO CALCULATORS)

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM.

1. What is the positive difference between the least common multiple and the greatest common factor of 1440 and 900 ?
2. Write in base 2, the result of $(101010)_{2}-(3)_{10}$.
3. What prime number is a divisor of every four-digit palindrome?

ANSWERS
(1 pt.) \qquad
(2 pts.)
2.

(3 pts.)
3. \qquad

Hudson, Notre Dame Academy, and Westborough

Round 2: Algebra 1 (OPEN)

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM.

1. Subtract and simplify the following expression to a single fraction.

$$
\frac{5}{2 x-2}-\frac{2 x-1}{2-2 x}
$$

2. Working together, Kate and Jean can close the restaurant in $\frac{2}{3}$ of an hour. Working alone, Jean can do the job in 1 hour less time than Kate, when she works alone. How long does it take Jean to do the job alone? Write your answer in terms of hours.
3. If a, b, c, and d are all ≥ 0 and $a+c=b, a+d=c, b-d=2$, and $b+c-d=3$, determine the sum $(a+b+c+d)$.

ANSWERS

(1 pt.)

1. \qquad
(2 pts.)
2. $\quad \underline{h r(s)}$
(3 pts.)
3. \qquad

Assabet Valley, Doherty, and Southbridge

Round 3: Geometry (OPEN)

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM.

1. A circle is circumscribed about a square. What is the ratio of the area of the circle to the area of the square?
2.

In the adjacent diagram, triangle ADB is equilateral. The measure of $\Varangle C A B$ is 60°, $\overline{A C} \perp \overline{C B}$, and $C B=3 \sqrt{3}$. Find the length Of $C D$.
3. ABCDE is a regular pentagon. What is the degree measure of the acute angle at the intersection of the segments AC and BD ?

ANSWERS
(1 pt.)

1. \qquad
(2 pts.)
2. \qquad
(3 pts.)
3. \qquad

Hudson, Westborough, Worcester Academy

Round 4: Logarithms, Exponents, and Radicals (NO CALCULATORS)

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM.

1. If $\frac{\left(a^{3}\right)^{21-5}}{\left(a^{3}\right)^{3 n-t}}=a^{x}$, determine the value of x in terms of \mathbf{n} and \mathbf{t}.
2. $\sqrt[3]{2^{\frac{1}{2}}} \sqrt[3]{6^{\frac{1}{5}}}$ can be written in the form $2^{p} 3^{q}$. Determine the sum $(p+q)$ and write your answer as a single fraction.
3. The solution of $\log _{9} x+\log _{7} x=15$ can be written in the form $3^{\text {a }}$. Determine the value of \mathbf{a}.

ANSWERS
(1 pt.) \qquad
(2 pts.)
2. \qquad
(3 pts.)
3. \qquad

West Boylston, Worcester Academy, and St. John's

Round 5: Trigonometry (OPEN)

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM UNLESS NOTED BELOW.

1. Express the following expression as a single trigonometric function.

$$
\frac{1-\cos 2 x}{\sin 2 x}
$$

2. If $\Varangle A$ is an acute angle and $\sin 2 \mathrm{~A}=2 \mathrm{x}$, determine the sum $(\sin \mathrm{A}+\cos \mathrm{A})$ in terms of x.
3. Three circles, centered at A, B, and C, are externally tangent to one another. The circle with center A has radius 3. The circle with center B has radius 5. The measure of $\measuredangle B A C$ is $\frac{\pi}{3}$ (in radians). What is the measure of $\measuredangle A B C$ in radians to the nearest hundredth?

ANSWERS

(1 pt.) \qquad
(2 pts.)
2. \qquad
(3 pts.)
3. \qquad

[^0]
TEAM ROUND

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND WRITTEN ON THE SEPARATE TEAM ANSWER SHEET.

1. The difference of the squares of two prime numbers is 10197 . What is the sum of the squares of the two numbers?
2. What is the remainder when $x^{3}-2$ is divided by $x^{2}-2$?
3. What is the length of the altitude drawn to the hypotenuse of a right triangle having legs equal to 5 and 12 ? Write your answer as a single fraction.
4. Evaluate $\frac{1}{\log _{2} \frac{1}{6}}-\frac{1}{\log _{3} \frac{1}{6}}-\frac{1}{\log _{4} \frac{1}{6}}$
5. Simplify $\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$ and write your answer as a single trigonometric function.
6. Solve for real x: $\quad 3^{2 x}+3^{x}-20=0$
7. Let a, b, and c be nonzero real numbers such that $a+\frac{1}{b}=5, b+\frac{1}{c}=12$, and $c+\frac{1}{a}=13$. Determine the value of $a b c+\frac{1}{a b c}$.
8. What is the largest integer whose prime factors add to 14 , assuming that if a prime factor is used more than once, then it adds to the sum more than once?
9. Let ABCDEFGHIJKL be a regular dodecagon. Determine the value of

$$
\frac{A B}{A F}+\frac{A F}{A B}
$$

Burncoat, Doherty, Hudson, Leicester, Quaboag,

March 29, 2006
Round 1: Elementary Number Theory

1. (1 pt.) $\quad 7020$
2. (2 pts.) (100111) $)_{2}$
3. (3 pts.) 11

Round 2: Algebra 1-open

1. (1 pt.) $\frac{x+2}{x-1}$
2. (2 pts.) 1 hour
3. (3 pts.) 4

Round 3: Geometry (OPEN)

1. (1 pt.) $\frac{\pi}{2}$ or $\pi: 2$
2. (2 pts.) $\quad 3 \sqrt{7}$
3. (3 pts.) 72

WOCOMAL Varsity Meet ANSWERS
Round 4: Logarithms, Exponents, and Radicals

1. (1 pt.) $x=-3 n-12 t$ or $-3(n-4)$
2. (2 pts.) $\frac{3}{10}$
3. (3 pts.) 18

Round 5: Trigonometry (OPEN)

1. (1 pt.) $\boldsymbol{\operatorname { t a n }} \mathrm{x}$
2. (2 pts.) $\sqrt{1+2 x}$
3. (3 pts.) 0.67

March 29, 2006

TEAM ROUND (2 pts. Each)

1. 10205
2. $2 \mathrm{x}-2$ or $2(\mathrm{x}-1)$
3. $\frac{60}{13}$
4. $\quad 1$
5. $\cos x$
6. $\frac{\ln 4}{\ln 3}$ or $\log _{3} 4$ or $\frac{\log _{a} 4}{\log _{a} 3}$, for any legitimate base a.
7. 750
8. 162
9. 4

March 29, 2006
TEAM ROUND

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THIS SEPARATE TEAM ANSWER SHEET. (2 points each)

1. \qquad
2.
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7.
8.
9.

March 29, 2006

TEAM ROUND

WOCOMAL Varsity Meet

School: \qquad
Team \#: \qquad

Team Members:
1.
2.
3.
4.
5. \qquad

Total Points for Team Round: \qquad

Worcester County Mathematics League

WOCOMAL Varsity Meet \#4

Coaches’ Booklet

March 29, 2006

[^0]: Auburn, Tahanto, Bromfield

